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• Motivation: Why are we making this simulation?  
– Simulation is the only end-to-end representation of EDL other 

than actual EDL.  We can’t test end-to-end EDL
– EDL will have more than one complete end-to-end simulation 

(Mars program requirement)
• POST2 (LaRC) provides official project performance results for Mars 

2020
• DSENDS is used for targeting and independent V&V of POST results

• Agenda
– Overview of MSL EDL and DSENDS models required
– MSL Reconstruction and comparison with expected results
– Summary and conclusions

Overview
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• A high-fidelity, physics-based flight-dynamics system simulation 
tool in use for EDL (e.g. M2020) and Proximity Operations (e.g. 
Comet). 

• Simulates the multi-body spacecraft’s position, attitude, 
articulation and body flexibility states and the interactions with 
gravity, atmospheres, terrain, and on-board s/c devices in 
response to onboard flight-software directed sensing and 
control actions. 

• DSENDS is used for end-to-end simulation and performance 
evaluation for flight missions, proposal development, internal 
R&D efforts, mission studies, algorithm & real-time testbeds, 
EDL targeting and mission operations. 

A deployment of the DARTS Lab’s DARTS/Dshell multi-mission simulation toolkit
What is DSENDS?
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Validation Hierarchies
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Complete System

Subsystem Cases

Benchmark Cases

Unit Cases

from: AIAA, 1998
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• MSL day-of-landing setup used.  The best 
prediction before landing of the expected result.
– 8000-sample Monte Carlo used to compute uncertainty 

on metrics of interest.  Over 100 specific metrics 
computed.

• Based on the MSL reconstruction work
– Reconstructed values for metrics of interest computed
– Explanation of variations relative to expectations 

gathered, where applicable
• A subset of those metrics is shown here.

Reconstruction Description
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• Values from various MSL reconstruction references (see list at the 
end)

• Entry
– Higher atmospheric density at guidance start
– Tail wind from heading alignment start through parachute deploy

• Parachute
– Deployment and inflation slightly faster than predicted
– Aeroshell angular rate/accel predicted well within reasonable bounds

• GNC
– Radar solution at significantly higher altitude than predicted
– Lower than expected TD velocity

How does the reconstruction compare to the expected values?
Reconstruction Summary
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Reconstruction Summary
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Description Units 1% Mean 99% Value Quantile
Prebank Error deg 0.05 2.67 8.72 8.595 3.019σ*
Downrange at Heading Alignment km 76.311 81.452 86.17 83.242  0.780σ
Downrange at SUFR km 8.249 14.233 20.388 12.819 -0.533σ
Downrange at Parachute Deploy km 1.534 7.466 13.658 4.966 -0.947σ
Peak Capsule Rates on Chute deg/s 23.2 47.6 88.3 69.4 1.078σ
Peak Capsule Ang. Accel on Chute deg/s^2 165 470 1042 625 0.580σ
Altitude AGL at TDS Nav Init km 5.695 6.729 7.454 8.346 4.164σ
Time in GN&C Mode 21 (Timeline Margin) s 31.375 43.91 56.192 62.5 3.491σ
Vertical Velocity at Touchdown m/s -0.82 -0.75 -0.67 -0.6 -1.465σ
Downrange at Touchdown km -6.564 -0.038 6.597 -2.329 -0.783σ
Landing Accuracy km 0.274 2.666 7.348 2.385 1.139σ�
*Note: One-sided distributions are compared to standard Rayleigh quantiles

Score Card Item
DSENDS EDL Simulation 

Monte Carlo Results
MSL Flight 

Reconstruction
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Downrange Distance to Target
12 July 2019IPPW-20198

Lower than expected deceleration from heading alignment to parachute deploy

• At start of heading alignment 
reconstructed downrange 
distance to target > prediction

• Lower supersonic deceleration 
between HA and parachute 
deploy à downrange distance 
to target decreases faster than 
prediction

• Touchdown 2.329 km 
downrange of target

IPPW-2019 812 July 2019

Time from TZERO [sec]

*TZERO is at entry interface minus 9 mins
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On-Parachute Dynamics
12 July 2019IPPW-20199

• Max. capsule angular rates & 
angular accelerations (RSS) during 
the parachute phase are within 
bounds of expectation

• MSL reconstruction provided 
additional data point for model 
parameter tuning for M2020
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• A DSENDS end-to-end simulation of EDL has been 
developed for Mars 2020.  

• This simulation has been verified by comparison with 
MSL reconstruction

• Future Work
– Update the setup as necessary to match the latest Mars 

2020 models and configuration.
• Final model integration and test is nearly complete

– Perform analysis as needed for simulation V&V
– Perform additional analyses as requested by Mars 2020.

Summary
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Toolkit usage
DARTS/Dshell Simulation
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Backshell Separation
~E+356s

Powered 
Descent

Sky Crane (see inset) 
~E+390– 410s

Flyaway

Heatshield 
Separation
~E+256s

Peak Heating
~E+85 s

Hypersonic Aero-Maneuvering Begins

Entry Interface
E+0 min

Peak Deceleration
~E+96 s Parachute Deploy

~E+230s

Cruise Stage Separation
E-10 min

CBMD Separation
~E-8 min

EDL Overview – Mars 2020 Models

14

Radar 
Ground 
Solution
and
Lander Vision 
System Solution
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GNC delivered models
• FSW R9.4.6
• RCS, DIMU device model
CBMs
• Mass/CM/Inertia: MP file 

(CC)
• Sep spring data (CC)

Aerodynamics
Aero/RCS interaction
• Aerodatabase 2.1
Atmosphere
• Mesoscale Tables
• MarsGRAM 2005
Aerothermal 

Environment
• Heating Indicators 

(CC)

SUFR (EBM)
• Mass/CM/Inertia: MP file (cc)
• Sep Spring Data (cc)
• FSW trigger
Deployment
• FSW trigger
Inflation
• Inflation distance & area v. time 

(memo/CC)
Strength
• Momentum flux indicator 

(memo/CC)
Inflated Performance
• Tabular aero (memo/CC)

Multi-body model
• FSW trigger
• Post-HSS capsule 

aero from ADB
• No HSS springs (on 

purpose)

TDS
• TDS Device Model
Nav Filter
• FSW processing 

TDS data

Atmosphere
• Mesoscale Modeling
• MarsGRAM 2005
Propulsion System
• MLE thruster device model
FSW
• FSW powered flight
Terrain
• MOLA (up to 1/128)
• 1m DEM

Flyaway
• FPGA SW model

LVS
• LVS Device Model

Touchdown

Mobility 
Deploy

Rover 
Separation

Flyaway 

Sky Crane 
Detail
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• Vehicle ready to process TDS 
data approx. 5 sec after 
heatshield sep.

• Radar solution obtained at 
significantly higher altitudes than 
predicted

• TDS level 1 model was 
intentionally conservative 

• (Slant range measuments > 7km 
declared invalid)

TDS Performance
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Touchdown Velocity
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MSL Reconstruction

• Rover vertical velocity at 
touchdown was significantly 
lower than expected

• Caused by a 450 μg error in 
estimating the local gravity at 
Gale crater

• Updated local gravity model for 
Mars2020
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• For MSL, how does the reconstruction compare to the expected values?
– Base this on the various reconstruction papers

• Notes from papers
– Gavin’s EG paper

• Higher atmos density at guidance start
• Tail wind late in guided entry
• Long SUFR-chute deploy time delta

– 0.5km downrange due to atmosphere/aero/winds
– Supersonic atmos data not very good (MEDLI not calibrated here), also adds uncertainty to aero 

recon
– Chute paper

• Deployment and inflation slightly faster than predicted
• Aeroshell angular rate/accel predicted well within reasonable bounds

– TDS: measurement start at significantly higher altitude than predicted, in line with HS separation and 
clear vs the modeled max height constraint based on requirements 

– PD an d prop/thruster papers
• Higher-than-expected thrust from MLEs

– Steltzner overview paper
• Lower than expected TD velocity

Reconstruction summary
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